Posted in Stanford University
In this lecture, Professor Susskind retouches on particle actions through the lagrangian, quantum field theory and path integral formulation.
Posted in Stanford University
In this lecture Leonard Susskind tackles the motion of fields containing particles and quantum field theory. He also shows how basic processes are coded by a Lagrangian.
Posted in Stanford University
This lecture breaks down the theory and mathematics behind particle & isotopic spin (and half spin) in addition to the Dirac equation.
Posted in Stanford University
Wrapping up the coverage of the quantum field theory, Professor Leonard Susskind discusses the theory behind angular momentum and the relevant mathematics.
Posted in Stanford University
Leonard Susskind continues elaborating the subject of quantum field theory, including, the diary equation and the hypothetical Higgs Bosons  the particle responsible for mass.
Posted in Stanford University
This lecture continues the discussion of the quantum field theory, focusing on fermions, waves and energy conservation.
Posted in Stanford University
This Stanford University lecture shows how quantum fields can be used to begin to describe various particle processes.
Posted in Stanford University
This lecture discusses the properties and structures of quantum fields and describes their relation to particles.
Posted in Stanford University
In this lecture Susskind discusses the quantum field theory (QFT), a theoretical framework for constructing quantum mechanical models of systems classically parametrized (represented) by an infinite number of fields.
Posted in Stanford University
Leonard Susskind gives the introductory lecture of a course that will explore the newest revolutions in particle physics. This class explores the properties of light, particles and the quantum field theory.

Courses
Most Viewed
1. Lecture 5: Evolution
1. Lecture 5: Evolution
(Professor Lynn Rothschild discusses evolution in the context of space and time, focusing on the emergence of life in the context of planetary formation on Earth and possibly elsewhere, and the evolution of intelligence in here and beyond.)
Hits: 5965
Category: Stanford University
2. Lecture 1: Introduction To Particle Physics
2. Lecture 1: Introduction To Particle Physics
(Leonard Susskind gives the introductory lecture of a course that will explore the newest revolutions in particle physics. This class explores the properties of light, particles and the quantum field theory.)
Hits: 5541
Category: Stanford University
3. Lecture 6: Diary Equation & Higgs Particles
3. Lecture 6: Diary Equation & Higgs Particles
(Leonard Susskind continues elaborating the subject of quantum field theory, including, the diary equation and the hypothetical Higgs Bosons  the particle responsible for mass.)
Hits: 4889
Category: Stanford University
4. Lecture 7: Angular Momentum
4. Lecture 7: Angular Momentum
(Wrapping up the coverage of the quantum field theory, Professor Leonard Susskind discusses the theory behind angular momentum and the relevant mathematics. )
Hits: 4748
Category: Stanford University
5. Lecture 10: Darwin's Birthday
5. Lecture 10: Darwin's Birthday
(Professor Lynn Rothschild and Stephen Palumbi, Director of the Hopkins Marine Station, discuss Charles Darwin's career, from his childhood to the end of his life. Naturally, the theory of evolution is also addressed.)
Hits: 4245
Category: Stanford University
6. Lecture 1: Introduction to Astrobiology
6. Lecture 1: Introduction to Astrobiology
(In this introductory lecture of Professor Lynn Rothschild's Astrobiology and Space Exploration course, professor Seth Shostak of the SETI institute gives a witty and engaging presentation on the overall status of the field of astrobiology.)
Hits: 4209
Category: Stanford University
7. Lecture 2: Quantum Field Theory
7. Lecture 2: Quantum Field Theory
(In this lecture Susskind discusses the quantum field theory (QFT), a theoretical framework for constructing quantum mechanical models of systems classically parametrized (represented) by an infinite number of fields.)
Hits: 3667
Category: Stanford University
8. Lecture 10: Path Integral Formulation
8. Lecture 10: Path Integral Formulation
(In this lecture, Professor Susskind retouches on particle actions through the lagrangian, quantum field theory and path integral formulation.)
Hits: 3657
Category: Stanford University
9. Lecture 13: Advanced Life Support Systems
9. Lecture 13: Advanced Life Support Systems
(John Hogan, Bioengineering Branch NASA Ames Research Center, discusses modern research into life support systems and technologies that could be used to create a regenerative and sustainable environment in space.)
Hits: 3171
Category: Stanford University
10. Lecture 14: A Human Place in Outer Space
10. Lecture 14: A Human Place in Outer Space
(Dr. Yvonne Clearwater, Past Principle Investigator for NASA Habitability Research Program, explains the complexity of creating a habitable space station that both promotes research productivity and maintains astronaut health and morale. )
Hits: 3061
Category: Stanford University
Top Rated
1. Lecture 6: Diary Equation & Higgs Particles
1. Lecture 6: Diary Equation & Higgs Particles
(Leonard Susskind continues elaborating the subject of quantum field theory, including, the diary equation and the hypothetical Higgs Bosons  the particle responsible for mass.)
Rating:
2.87
Category: Stanford University
2. Lecture 9: Equations of Quantum Field Theory
2. Lecture 9: Equations of Quantum Field Theory
(In this lecture Leonard Susskind tackles the motion of fields containing particles and quantum field theory. He also shows how basic processes are coded by a Lagrangian.)
Rating:
2.85
Category: Stanford University
3. Lecture 9: The Search for Life on Mars
3. Lecture 9: The Search for Life on Mars
(Dr. Janice Bishop (of the Carl Sagan Center at the SETI Institute and the NASA Ames Research Center) discusses the mineralogy and geology of Mars and the active search for life on the red planet.)
Rating:
2.85
Category: Stanford University
4. Lecture 03: Skeletal System II
4. Lecture 03: Skeletal System II
(This Berkeley lecture starts with an overview of cells involved in the skeletal system, from the overall structure of various cells to their shape, function, and identification. Then goes into the structure of the skull.)
Rating:
2.84
Category: Berkeley
5. Lecture 24: Development Of The Nervous System
5. Lecture 24: Development Of The Nervous System
(This lecture goes over the classification of neurons and the terminology of neuron clusters before shifting into the development of the nervous system. It then discusses the development and divisions of neural tubes. )
Rating:
2.84
Category: Berkeley
6. Lecture 13: Advanced Life Support Systems
6. Lecture 13: Advanced Life Support Systems
(John Hogan, Bioengineering Branch NASA Ames Research Center, discusses modern research into life support systems and technologies that could be used to create a regenerative and sustainable environment in space.)
Rating:
2.84
Category: Stanford University
7. Lecture 2: Quantum Field Theory
7. Lecture 2: Quantum Field Theory
(In this lecture Susskind discusses the quantum field theory (QFT), a theoretical framework for constructing quantum mechanical models of systems classically parametrized (represented) by an infinite number of fields.)
Rating:
2.84
Category: Stanford University
8. Lecture 2: Realism & Formalism
8. Lecture 2: Realism & Formalism
(This lecture shows the importance and relevance of studying film. It presents mathematics as a form of abstract art, breaks down the style and method of realism and formalism, outlines the differences and similarities between film and photography.)
Rating:
2.84
Category: M.I.T.
9. Lecture 11: Life Beyond Its Planet of Origin
9. Lecture 11: Life Beyond Its Planet of Origin
(Rocco Mancinelli, Bay Area Environmental Research Institute, discusses how recent research has is expanding our understanding of how organisms can survive and evolve outside of planet Earth.)
Rating:
2.84
Category: Stanford University
10. Lecture 12: Biologically Reversible Exploration
10. Lecture 12: Biologically Reversible Exploration
(Chris McKay, Planetary Scientist with the Space Science Division of NASA Ames Research Center, discusses a novel idea  based on the human valuation of life, the mission of astrobiology should be to spread the beauty and diversity of life into the stars.)
Rating:
2.84
Category: Stanford University
